P-wave velocity structure of the crust and uppermost mantle beneath Iceland from local earthquake tomography
نویسندگان
چکیده
The structure of the crust and uppermost mantle beneath Iceland, the keys to understanding the magma plumbing system of the hotspot and hotspot–ridge interaction, was poorly constrained in previous seismological investigations. Here we develop a three-dimensional P-wave velocity model of the Icelandic crust and uppermost mantle from tomographic inversion of over 3500 first-arrivals from local earthquakes recorded in Iceland. The model shows a broad low-velocity anomaly in the middle and lower crust underlying a high velocity body in the shallow crust in central Iceland. With seismic rays traversing below the crust, the inversion also reveals a pronounced P-wave velocity reduction, about 5% or 1.4–2 times that in the 100–400 km depth range imaged by teleseismic tomography, in the uppermost mantle beneath central Iceland. The large velocity reduction requires an excess temperature of up to 500 degrees or, more likely, a combination of excess temperature and partial melt. The localized nature of the region of low velocity beneath central Iceland and the lack of comparable velocity reduction along the volcanic zones suggest a relatively focused melt supply of the hotspot. D 2005 Elsevier B.V. All rights reserved.
منابع مشابه
2-D Surface Wave Tomography in the Northwest Part of the Iranian Plateau
In this study, we obtained two-dimensional tomography maps of the Rayleigh wave group velocity for the northwest part of the Iranian Plateau in order to investigate the structure of the crust and the uppermost mantle of NW Iran. To do this, the local earthquake data during the period 2006-2013, recorded by the 10 broadband stations of the Iranian seismic network (INSN) were used. After the prel...
متن کاملStructure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography
[1] Ambient noise tomography and multiple plane wave earthquake tomography are new methods of surface wave analysis that yield much more highly refined information about the crust and uppermost mantle than traditional surface wave techniques. Applied together to data observed at more than 300 broadband seismic stations from the Transportable Array component of the EarthScope USArray, these meth...
متن کاملThe crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis
a r t i c l e i n f o a b s t r a c t Southern Peru is located in the northern Central Andes, which is the highest plateau along an active subduction zone. In this region, the Nazca slab changes from normal to flat subduction, with the associated Holocene volcanism ceasing above the flat subduction regime. We use 6 s to 67 s period surface wave signals from ambient noise cross-correlations and ...
متن کاملCrustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data
[1] Surface wave dispersion measurements from ambient seismic noise and array‐based measurements from teleseismic earthquakes observed with the EarthScope/USArray Transportable Array (TA) are inverted using a Monte Carlo method for a 3‐D VS model of the crust and uppermost mantle beneath the western United States. The combination of data from these methods produces exceptionally broadband dispe...
متن کاملCrustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography
S U M M A R Y Rayleigh wave phase velocity maps in southern Africa are obtained at periods from 6 to 40 s using seismic ambient noise tomography applied to data from the Southern Africa Seismic Experiment (SASE) deployed between 1997 and 1999. These phase velocity maps are combined with those from 45 to 143 s period which were determined previously using a two-planewave method by Li & Burke. In...
متن کامل